Study of BaGe_{5} by manual electron-diffraction tomography

W Carrillo-Cabrera
Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany
carrillo@cpfs.mpg.de
Keywords: Electron crystallography, electron diffraction tomography, crystal structure solution

The novel tool electron-diffraction tomography [1] was used for a single-crystal structure study of BaGe_{5} with unit cell parameters $a=10.7242(7) \AA, b=9.2873(8) \AA, c=14.7905(11) \AA$ (refined from X-ray powder diffraction data) [2] and space group Pmna (previous electron diffraction study) [3]. The BaGe_{5} phase was obtained as microcrystalline material (layered crystallites, about $6-15 \mu \mathrm{~m}$ length, about $0.5-3 \mu \mathrm{~m}$ thickness, Fig. 1 left) by decomposition of the high-temperature $\mathrm{Ba}_{8} \mathrm{Ge}_{43}$ clathrate-I (stable at $770^{\circ} \mathrm{C}$ to $810{ }^{\circ} \mathrm{C}$) after annealing at $460{ }^{\circ} \mathrm{C}$ [2]. The first attempt to solve its crystal structure from precession electron diffraction data (precession semi-angle 1°) failed [3]. Although, in the meantime the BaGe_{5} crystal structure has been solved from X-ray powder diffraction data [2, 4], we used BaGe_{5} to test the manual electron-diffraction tomography technique and learn about all the features and difficulties of the method.

Conventional transmission electron microscopy and manually collected diffraction tomography were performed on a FEI TECNAI 10 (100 KV) microscope, equipped with a 2 k CCD camera (TemCam-F224HD from TVIPS). The selected area diffraction (SAED) mode was used for data collection. The aperture area had at the image plane a size of about 450 nm . A small crystal (Fig. 1 right) on the holey carbon-coated TEM support grid was selected for data acquisition (without beam precession). The tilt sequence at steps of 1° was performed manually in a total tilt range of 130° $\left(\pm 65^{\circ}\right)$ using a standard double-tilt holder from GATAN. The collected series data was stored as a set of files in TIF format and converted into MRC stacks, which were further processed using the ADT3D software package [1] for a reconstruction of the diffraction volume. After indexing the 3Dspots in the reciprocal-space lattice of BaGe_{5}, their intensities were integrated and stored as standard $h k l$-files (1412 reflections; 454 unique reflections). In Fig 2, two projections (along a and b axes) of the three-dimensional reconstructed reciprocal-space diffraction volume of BaGe_{5} are illustrated. The unit cell parameters resulting from electron-diffraction tomography were $a=10.762$ $\AA, b=9.270 \AA, c=14.919 \AA, \alpha=89.53^{\circ}, \beta=89.77^{\circ}, \gamma=89.72^{\circ}$.

Structure solution was achieved by direct methods using SIR2008 software [5]. All the atomic positions of BaGe_{5} structure were obtained by direct methods and were refined with the SHELXL software [6]. The final R-value was relative large $\left(R_{1}=0.247 ; 423\right.$ reflections, 40 refined parameters) but reasonable for electron diffraction data without corrections for absorption or residual dynamical effects. The $\mathrm{Ba}-\mathrm{Ge}(3.15-4.10 \AA$) and $\mathrm{Ge}-\mathrm{Ge}(2.38-2.66 \AA$) distances were similar to those obtained by X-ray powder diffractometry methods.

Although, several details of the crystal structure were already discussed before [2, 4], we can mention here that the semiconductor BaGe_{5} discloses a partially disordered structure related to both clathrate types I and II. It contains germanium vacancies arranged in layers parallel to (010) plane, appearing as a collapsed clathrate-II structure or as a reconstructed clathrate-I realized by crystallographic shear [2].

In summary, we were able to solve the crystal structure of BaGe_{5} using hkl-intensity data acquired by manual electron-diffraction tomography. This success opens new perspectives for our future investigations on micro- and nano-structured intermetallic and other compounds.

References

[1] U Kolb et al., Cryst. Res.Technol. 46 (2011) p. 542.
[2] W Carrillo-Cabrera, Z. Kristallogr. 236 (2011) p. 619.
[3] W Carrillo-Cabrera, MC2009 Conference Proceedings 1 (2009) p. 275.
[4] U Aydemir et al., J. Am. Chem. Soc. 132 (2010) p. 10984.
[5] MC Burla et al., J. Appl. Crystallogr. 40 (2007) p. 609.
[6] GM Sheldrick, Acta Crystallogr. A64 (2008) p. 112.

Figure 1. (left) Bright field TEM image showing elongated crystallites of $B a{ }^{2} e_{5}$, several of them with stacking faults. (right) Crystal fragment (200x190x90 nm) used for the electron-diffraction tomography study.

Figure 2. Projections of the reciprocal volume along [100] (left) and [010] (right) directions. It can be recognized that the spot intensity distribution has symmetry revealing a kinematical character.

